
CS 253: Web Security
DNS, HTTP
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Admin
• Assignment 0 is out!
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What happens when you type a URL 
and press enter?

3 Feross Aboukhadijeh



4 Feross Aboukhadijeh



Domain Name System (DNS)
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DNS
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DNS
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DNS
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How does the "DNS server" work?
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What happens when you type a URL 
and press enter?
1. Client asks DNS Recursive Resolver to lookup a hostname (stanford.edu).
2. DNS Recursive Resolver sends DNS query to Root Nameserver

• Root Nameserver responds with IP address of TLD Nameserver (".edu" Nameserver)
3. DNS Recursive Resolver sends DNS query to TLD Nameserver

• TLD Nameserver responds with IP address of Domain Nameserver ("stanford.edu" Nameserver)
4. DNS Recursive Resolver sends DNS query to Domain Nameserver

• Domain Nameserver is authoritative, so replies with server IP address.
5. DNS Recursive Resolver finally responds to Client, sending server IP address (171.67.215.200)
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DNS + HTTP
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DNS + HTTP
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DNS + HTTP

25 Feross Aboukhadijeh



DNS + HTTP
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DNS + HTTP
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Attacks on DNS
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DNS hijacking
• Attacker changes target DNS record to point to attacker IP address

• Causes all site visitors to be directed to attacker's web server
• Motivation

• Phishing
• Revenue through ads, cryptocurrency mining, etc.

• How do they do it?
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DNS hijacking

30 Feross Aboukhadijeh



DNS hijacking
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DNS hijacking
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DNS hijacking
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DNS hijacking
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DNS hijacking vectors
• Hijacked recursive DNS resolver (shown previously)
• Hijacked DNS nameserver
• Compromised user account at DNS provider
• Malware changes user's local DNS settings
• Hijacked router
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DNS privacy
• Queries are in plaintext
• ISPs have been known to sell this data

• Pro tip: Consider switching your DNS settings to 1.1.1.1 or 
another provider with a good privacy policy
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What happens when you type a URL 
and press enter?
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HTTP
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HTTP
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HTTP
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Demo: Make an HTTP request
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Demo: Make an HTTP request
curl https://twitter.com

curl https://twitter.com > twitter.html
open twitter.html
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HTTP request
GET / HTTP/1.1
Host: twitter.com
User-Agent: Mozilla/5.0 ...
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HTTP response
HTTP/1.1 200 OK
Content-Length: 9001
Content-Type: text/html; charset=UTF-8
Date: Tue, 24 Sep 2019 20:30:00 GMT

<!DOCTYPE html ...
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HTTP
• Client-server model - Client asks server for resource, server replies
• Simple - Human-readable text protocol
• Extensible - Just add HTTP headers
• Transport protocol agnostic - Only requirement is reliability
• Stateless - Two requests have no relation to each other
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HTTP is stateless?
• Obviously, we interact with "stateful" servers all the time
• "Stateless" means the HTTP protocol itself does not store state
• If state is desired, is implemented as a layer on top of HTTP
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HTTP Status Codes
• 1xx - Informational ("Hold on")
• 2xx - Success ("Here you go")
• 3xx - Redirection ("Go away")
• 4xx - Client error ("You messed up")
• 5xx - Server error ("I messed up")
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HTTP Success Codes
• 200 OK - Request succeeded
• 206 Partial Content - Request for specific byte range succeeded

53 Feross Aboukhadijeh



Range Request

GET /video.mp4 HTTP/1.1
Range: bytes=1000-1499

Response
HTTP/1.1 206 Partial Content
Content-Range: bytes 1000-1499/1000000
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HTTP Redirection Codes
• 301 Moved Permanently - Resource has a new permanent URL
• 302 Found - Resource temporarily resides at a different URL
• 304 Not Modified - Resource has not been modified since last 

cached
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HTTP Client Error Codes
• 400 Bad Request - Malformed request
• 401 Unauthorized - Resource is protected, need to authorize
• 403 Forbidden - Resource is protected, denying access
• 404 Not Found - Ya'll know this one
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HTTP Server Error Codes
• 500 Internal Server Error - Generic server error
• 502 Bad Gateway - Server is a proxy; backend server is unreachable
• 503 Service Unavailable - Server is overloaded or down for 

maintenance
• 504 Gateway Timeout - Server is a proxy; backend server 

responded too slowly
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HTTP with a proxy server
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HTTP with a proxy server
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HTTP with a proxy server
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HTTP with a proxy server
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HTTP with a proxy server

62 Feross Aboukhadijeh



HTTP proxy servers
• Can cache content
• Can block content (e.g. malware, adult content)
• Can modify content
• Can sit in front of many servers ("reverse proxy")
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HTTP request
GET / HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 ...
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HTTP headers
• Let the client and the server pass additional information with an 

HTTP request or response
• Essentially a map of key-value pairs
• Allow experimental extensions to HTTP without requiring protocol 

changes
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Useful HTTP request headers
• Host - The domain name of the server (e.g. example.com)

• User-Agent - The name of your browser and operating system

• Referer - The webpage which led you to this page (misspelled)

• Cookie - The cookie server gave you earlier; keeps you logged in

• Range - Specifies a subset of bytes to fetch
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Useful HTTP request headers (pt 2)
• Cache-Control - Specifies if you want a cached response or not

• If-Modified-Since - Only send resource if it changed recently

• Connection - Control TCP socket (e.g. keep-alive or close)

• Accept - Which type of content we want (e.g. text/html)

• Accept-Encoding - Encoding algorithms we understand (e.g. gzip)

• Accept-Language - What language we want (e.g. es)
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Demo: Make an HTTP request with 
headers
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Demo: Make an HTTP request with 
headers
curl https://twitter.com --header "Accept-Language: es" --silent | grep JavaScript

curl https://twitter.com --header "Accept-Language: ar" --silent | grep JavaScript
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Demo: User-Agent Examples
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HTTP response
HTTP/1.1 200 OK
Content-Length: 9001
Content-Type: text/html; charset=UTF-8
Date: Tue, 24 Sep 2019 20:30:00 GMT

<!DOCTYPE html ...
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Useful HTTP response headers
• Date - When response was sent

• Last-Modified - When content was last modified

• Cache-Control - Specifies whether to cache response or not

• Expires - Discard response from cache after this date

• Set-Cookie - Set a cookie on the client

• Vary - List of headers which affect response; used by cache
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Vary on user language
HTTP/1.1 200 OK
Cache-Control: public, max-age=31536000
Vary: Accept-Langauge
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Useful HTTP response headers (pt 2)
• Location - URL to redirect the client to (used with 3xx responses)

• Connection - Control TCP socket (e.g. keep-alive or close)

• Content-Type - Type of content in response (e.g. text/html)

• Content-Encoding - Encoding of the response (e.g. gzip)

• Content-Language - Language of the response (e.g. ar)

• Content-Length - Length of the response in bytes
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Demo: Implement an HTTP client
• Not magic!
• Steps:

• Open a TCP socket
• Send HTTP request text over the socket
• Read the HTTP response text from the socket
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Implement an HTTP client
const net = require('net')

const socket = net.createConnection({
  host: 'example.com',
  port: 80
})

const request = `
GET / HTTP/1.1
Host: example.com

`.slice(1)

socket.write(request)
socket.pipe(process.stdout)
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Implement an HTTP client (take 2)
const dns = require('dns')
const net = require('net')

dns.lookup('example.com', (err, address) => {
  if (err) throw err

  const socket = net.createConnection({
    host: address,
    port: 80
  })

  const request = `
GET / HTTP/1.1
Host: example.com

`.slice(1)

  socket.write(request)
  socket.pipe(process.stdout)
})
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Demo: Chrome DevTools
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What happens when you type a URL 
and press enter?
1. Perform a DNS lookup on the hostname (example.com) to get an IP address (1.2.3.4)

2. Open a TCP socket to 1.2.3.4 on port 80 (the HTTP port)

3. Send an HTTP request that includes the desired path (/)
4. Read the HTTP response from the socket
5. Parse the HTML into the DOM
6. Render the page based on the DOM
7. Repeat until all external resources are loaded:

• If there are pending external resources, make HTTP requests for these (run steps 1-4)
• Render the resources into the page
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END

92 Feross Aboukhadijeh


