CS 253: Web Security DNS, HTTP

Admin

Assignment 0 is out!

What happens when you type a URL and press enter?

Domain Name System (DNS)

Client

DNS Server

How does the "DNS server" work?

Client

DNS Recursive Resolver

Root Nameserver

Root Nameserver

Client

stanford.edu?

DNS Recursive Resolver

stanford.edu? See".edu" NS **DNS** stanford.edu? Client Recursive Resolver

Root Nameserver

"stanford.edu" **Nameserver**

What happens when you type a URL and press enter?

- 1. Client asks DNS Recursive Resolver to lookup a hostname (stanford.edu).
- 2. **DNS Recursive Resolver** sends DNS query to **Root Nameserver**
 - Root Nameserver responds with IP address of TLD Nameserver (".edu" Nameserver)
- 3. **DNS Recursive Resolver** sends DNS query to **TLD Nameserver**
 - TLD Nameserver responds with IP address of Domain Nameserver ("stanford.edu" Nameserver)
- 4. **DNS Recursive Resolver** sends DNS query to **Domain Nameserver**
 - Domain Nameserver is authoritative, so replies with server IP address.
- 5. **DNS Recursive Resolver** finally responds to **Client**, sending server IP address (171.67.215.200)

DNS + HTTP

DNS Recursive Resolver

Client

Server 1.2.3.4

DNS + HTTP

DNS Recursive Resolver

Client

Server

Server 1.2.3.4

Attacks on DNS

DNS hijacking

- Attacker changes target DNS record to point to attacker IP address
 - Causes all site visitors to be directed to attacker's web server
- Motivation
 - Phishing
 - Revenue through ads, cryptocurrency mining, etc.
- How do they do it?

DNS hijacking

Hijacked DNS Resolver

Client

Malicious Server

9.9.9.9

Server

DNS hijacking Hijacked **DNS** stanford.edu? Resolver **Client**

Malicious Server 9.9.9.9

Server

DNS hijacking Hijacked DNS stanford.edu? Resolver **Client**

Malicious Server

9.9.9.9

Server

DNS hijacking vectors

- Hijacked recursive DNS resolver (shown previously)
- Hijacked DNS nameserver
- Compromised user account at DNS provider
- Malware changes user's local DNS settings
- Hijacked router

University Security

86% of Education Industry Experienced DNS Attack in Past Year

The education industry also has the lowest adoption of network security policy management automation at only 8%, according to a new report.

Make this My Homepage

T··Mobile·

Search

Web Results

Find Answers Fast

Search for Information Here Look Up Quick Results Now!

Sponsored by: wow.com/Fast-Answers

EVINE Live - Once ShopHQ

Huge Selection of Jewelry, Watches, Apparel, Beauty, and Home Decor.

Sponsored by: www.evine.com

Compare Prices

Now up to 75% off Compare prices and save up to 75%

Sponsored by: Compare.salebounty.com

O-C - Cheap Prices

See Hot Bargains for Q-C! Update Your Home for Less.

Sponsored by: www.NexTag.com/Home-and-Garden

Questionable Content

Centers around an average frustrated 20-something music nerd, his PC and Faye. Includes archive, FAQ and overview. questionablecontent.net

Questionable Content - definition of **Questionable Content** by ...

By its very nature, it is open sourced -- meaning any one can edit its **contents**, providing **questionable content** that is then taken to be the definitive information ...

www.thefreedictionary.com/Questionable+Content

Questionable Content - Questionable Content Wiki

Overview Edit. Questionable Content is a slice-of-life webcomic popular for its combination of believable and engaging characters, flights of fancy, and banter. It is ...

questionablecontent.wikia.com/wiki/Questionable Content

Related Searches

F.A.Q. Customer Support Why am I here?

Accstation

<u>Qc</u>

All Comic Book

X Man

Marvel Comic

Marvels

C.c Cosplay

Comic Cartoon

Comic Book Price Guide

The Batman

Find Answers Fast

Search for Information Here Look Up **Ouick Results Now!**

wow.com/Fast-Answers

EVINE Live - Once ShopHO

Huge Selection of Jewelry, Watches, Apparel, Beauty, and Home Decor.

www.evine.com

Compare Prices

Now up to 75% off Compare prices and save up to 75%

Compare.salebounty.com

DNS privacy

- Queries are in plaintext
- ISPs have been known to sell this data
- **Pro tip:** Consider switching your DNS settings to 1.1.1.1 or another provider with a good privacy policy

FIREFOX

What's next in making Encrypted DNS-over-HTTPS the Default

Selena Deckelmann

September 6, 2019

In 2017, Mozilla began working on the DNS-over-

HTTPS (DoH) protocol, and since June 2018 we've been running experiments in

What happens when you type a URL and press enter?

Client

Server

Demo: Make an HTTP request

Demo: Make an HTTP request

```
curl https://twitter.com
```

```
curl https://twitter.com > twitter.html
open twitter.html
```

HTTP request

GET / HTTP/1.1

Host: twitter.com

User-Agent: Mozilla/5.0 ...

HTTP response

HTTP/1.1 200 OK

Content-Length: 9001

Content-Type: text/html; charset=UTF-8

Date: Tue, 24 Sep 2019 20:30:00 GMT

<!DOCTYPE html ...

HTTP/1.1 200 OK Status Code Status Message **Protocol Version**

НТТР

- Client-server model Client asks server for resource, server replies
- Simple Human-readable text protocol
- **Extensible** Just add HTTP headers
- Transport protocol agnostic Only requirement is reliability
- Stateless Two requests have no relation to each other

HTTP is stateless?

- Obviously, we interact with "stateful" servers all the time
- "Stateless" means the HTTP protocol itself does not store state
- If state is desired, is implemented as a layer on top of HTTP

HTTP Status Codes

- 1xx Informational ("Hold on")
- 2xx Success ("Here you go")
- 3xx Redirection ("Go away")
- 4xx Client error ("You messed up")
- 5xx Server error ("I messed up")

HTTP Success Codes

- **200 OK** Request succeeded
- 206 Partial Content Request for specific byte range succeeded

Range Request

GET /video.mp4 HTTP/1.1

Range: bytes=1000-1499

Response

HTTP/1.1 206 Partial Content

Content-Range: bytes 1000-1499/1000000

HTTP Redirection Codes

- 301 Moved Permanently Resource has a new permanent URL
- 302 Found Resource temporarily resides at a different URL
- 304 Not Modified Resource has not been modified since last cached

HTTP Client Error Codes

- 400 Bad Request Malformed request
- 401 Unauthorized Resource is protected, need to authorize
- **403 Forbidden** Resource is protected, denying access
- 404 Not Found Ya'll know this one

HTTP Server Error Codes

- 500 Internal Server Error Generic server error
- **502 Bad Gateway** Server is a proxy; backend server is unreachable
- 503 Service Unavailable Server is overloaded or down for maintenance
- 504 Gateway Timeout Server is a proxy; backend server responded too slowly

Client

Proxy

HTTP proxy servers

- Can cache content
- Can block content (e.g. malware, adult content)
- Can modify content
- Can sit in front of many servers ("reverse proxy")

HTTP request

GET / HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 ...

Header Name

Host: example.com

Header Value

HTTP headers

- Let the client and the server pass additional information with an HTTP request or response
- Essentially a map of key-value pairs
- Allow experimental extensions to HTTP without requiring protocol changes

Useful HTTP request headers

- Host The domain name of the server (e.g. example.com)
- **User-Agent** The name of your browser and operating system
- **Referer** The webpage which led you to this page (misspelled)
- **Cookie** The cookie server gave you earlier; keeps you logged in
- Range Specifies a subset of bytes to fetch

Useful HTTP request headers (pt 2)

- **Cache-Control** Specifies if you want a cached response or not
- If-Modified-Since Only send resource if it changed recently
- Connection Control TCP socket (e.g. keep-alive or close)
- Accept Which type of content we want (e.g. text/html)
- Accept-Encoding Encoding algorithms we understand (e.g. gzip)
- Accept-Language What language we want (e.g. es)

Demo: Make an HTTP request with headers

Demo: Make an HTTP request with headers

```
curl https://twitter.com --header "Accept-Language: es" --silent | grep JavaScript
curl https://twitter.com --header "Accept-Language: ar" --silent | grep JavaScript
```

Demo: User-Agent Examples

HTTP response

HTTP/1.1 200 OK

Content-Length: 9001

Content-Type: text/html; charset=UTF-8

Date: Tue, 24 Sep 2019 20:30:00 GMT

<!DOCTYPE html ...

Useful HTTP response headers

- Date When response was sent
- Last-Modified When content was last modified
- **Cache-Control** Specifies whether to cache response or not
- **Expires** Discard response from cache after this date
- Set-Cookie Set a cookie on the client
- Vary List of headers which affect response; used by cache

Vary on user language

HTTP/1.1 200 OK

Cache-Control: public, max-age=31536000

Vary: Accept-Langauge

Useful HTTP response headers (pt 2)

- Location URL to redirect the client to (used with 3xx responses)
- Connection Control TCP socket (e.g. keep-alive or close)
- Content-Type Type of content in response (e.g. text/html)
- Content-Encoding Encoding of the response (e.g. gzip)
- Content-Language Language of the response (e.g. ar)
- Content-Length Length of the response in bytes

HTML

CSS

JS

Hypertext Transfer Protocol

Transport Layer Security

Transmission Control Protocol

Internet Protocol

Demo: Implement an HTTP client

- Not magic!
- Steps:
 - Open a TCP socket
 - Send HTTP request text over the socket
 - Read the HTTP response text from the socket

Implement an HTTP client

```
const net = require('net')
const socket = net.createConnection({
  host: 'example.com',
  port: 80
const request = `
GET / HTTP/1.1
Host: example.com
`.slice(1)
socket.write(request)
socket.pipe(process.stdout)
```

Implement an HTTP client (take 2)

```
const dns = require('dns')
const net = require('net')
dns.lookup('example.com', (err, address) => {
  if (err) throw err
  const socket = net.createConnection({
    host: address,
    port: 80
  const request = `
GET / HTTP/1.1
Host: example.com
`.slice(1)
  socket.write(request)
  socket.pipe(process.stdout)
})
```

Demo: Chrome DevTools

```
▼ General
 Request URL: http://example.com/
 Request Method: GET
 Status Code: 9 200 0K
 Remote Address: 93.184.216.34:80
 Referrer Policy: no-referrer-when-downgrade
▼ Response Headers view source
 Accept-Ranges: bytes
 Cache-Control: max-age=604800
 Content-Encoding: gzip
 Content-Length: 606
 Content-Type: text/html; charset=UTF-8
 Date: Tue, 24 Sep 2019 01:00:27 GMT
 Etag: "1541025663"
 Expires: Tue, 01 Oct 2019 01:00:27 GMT
 Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
 Server: ECS (oxr/8325)
 Vary: Accept-Encoding
 X-Cache: HIT
▼ Request Headers
                   view source
 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/appg,*/*;q=0.8,app
 lication/signed-exchange;v=b3
 Accept-Encoding: gzip, deflate
 Accept-Language: en-US, en; q=0.9
 Cache-Control: no-cache
 Connection: keep-alive
 Host: example.com
 Pragma: no-cache
 Upgrade-Insecure-Requests: 1
 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko)
 Chrome/77.0.3865.90 Safari/537.36
```

What happens when you type a URL and press enter?

- 1. Perform a **DNS lookup** on the hostname (example.com) to get an IP address (1.2.3.4)
- 2. Open a **TCP socket** to **1.2.3.4** on port **80** (the HTTP port)
- 3. Send an HTTP request that includes the desired path (/)
- 4. Read the **HTTP response** from the socket
- 5. Parse the HTML into the DOM
- 6. Render the page based on the DOM
- 7. Repeat until all external resources are loaded:
 - If there are pending external resources, make HTTP requests for these (run steps 1-4)
 - Render the resources into the page

DNS Recursive Resolver

Stanford.edu?

DNS Recursive
Resolver

Stanford.edu?

DNS Recursive
Resolver

NS

Client

Server

Client

Server

GET /

200 OK, <!doctype html...

Client

Server

