
HTTPS in the real world

1

 Joe DeBlasio
 jdeblasio@chromium.org
 @deblasioj

Who am I?

I lead Chrome Security's "HTTPS Ecosystem Engineering" team.

We work on:
● increasing HTTPS adoption,
● communicating site identity to users,
● researching on how people use Chrome’s security features,
● behind-the-scenes ecosystem stuff,

(e.g. Certificate Transparency, HSTS, TLS deprecations, etc.), and

I also do other security team work:
● security reviews and consulting for other Chrome teams.
● Chrome's Vulnerability Rewards Program

Previously: PhD in e-crime and web security measurement from UCSD.
2

Reminder: HTTPS

https:// provides confidentiality, integrity, authentication.

But
1. not all sites support https://
2. even when sites support https://, we still sometimes still use http://
3. https:// is only as strong as the certificate

Today: attempts to fix (2) and (3),
with lessons about what worked in the real world and what didn’t.

3

HTTPS sites don't always use HTTPS

4

Always HTTPS: users still end up on http://

Even when sites fully support* https://, users still use http:// sometimes:

● User clicks on http:// links
● User types “example.com” into the address bar**
● https:// page loads http:// subresources** (e.g. images)

* That's not guaranteed. Again, a different talk.

** We've partially fixed these in the last ~year.

5

Always HTTPS: Good sites redirect users

Not good enough! Attackers can prevent these redirects!

6

$ curl -v http://joedeblasio.com/foo
> GET /foo HTTP/1.1
> Host: joedeblasio.com
>
< HTTP/1.1 301 Moved Permanently
< Location: https://joedeblasio.com/foo

Always HTTPS: http:// interception happens

7

Always HTTPS: fix attempt - positive UI

8

Always HTTPS: fix attempt - positive UI

Doesn't work!

● People don’t notice missing indicators.
● Many don't know what they mean.
● Not actionable. What's the user supposed to do?

See
● “The Emperor’s New Security Indicators” (Schechter et al.)
● “An Evaluation of Extended Validation and Picture-in-Picture Phishing Attacks” (Jackson et al.)
● “‘If HTTPS Were Secure, I Wouldn’t Need 2FA’ -- End User and Administrator Mental Models of HTTPS” (Krombholz et al.)
● “The Web's Identity Crisis: Understanding the Effectiveness of Website Identity Indicators” (Thompson et al.)

9

http://www.usablesecurity.org/emperor/emperor.pdf
http://www.usablesecurity.org/papers/jackson.pdf
https://www.sba-research.org/wp-content/uploads/publications/2019-Pfeffer-HTTPS_Mental_Models.pdf
https://ai.google/research/pubs/pub48199

Always HTTPS: Strict Transport Security

Let websites opt-in to strict mode: “Only ever contact me via https://.”

10

Always HTTPS: Strict Transport Security

Let websites opt-in to strict mode: “Only ever contact me via https://.”

● Browser transparently rewrites http://example.com to https://example.com.
● Invalid certificate on https://example.com can't be bypassed.

HSTS = HTTP Strict Transport Security

11

12

13

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:

Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

14

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:

Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

How long (in seconds) the browser
should remember this STS information

15

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:

Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

Apply to all subdomains, e.g. if header
observed on example.com, upgrade
foo.example.com, too.

16

Always HTTPS: Strict Transport Security

HSTS Gotchas:

17

Always HTTPS: Strict Transport Security

HSTS Gotchas:

● No way to set includeSubdomains for all-but-a-few subdomains
○ Hard for big organizations with many subdomains operated separately

18

Always HTTPS: Strict Transport Security

HSTS Gotchas:

● No way to set includeSubdomains for all-but-a-few subdomains
○ Hard for big organizations with many subdomains operated separately

● No official way to set HSTS on full domain from subdomain
○ e.g., users visit www.example.com; site wants HSTS for all of example.com

19

Always HTTPS: Strict Transport Security

HSTS Gotchas:

● No way to set includeSubdomains for all-but-a-few subdomains
○ Hard for big organizations with many subdomains operated separately

● No official way to set HSTS on full domain from subdomain
○ e.g., users visit www.example.com; site wants HSTS for all of example.com

● No way to undo HSTS besides waiting
○ "Oh no! We forgot about that service!"

20

Always HTTPS: Strict Transport Security

HSTS Gotchas:

● No way to set includeSubdomains for all-but-a-few subdomains
○ Hard for big organizations with many subdomains operated separately

● No official way to set HSTS on full domain from subdomain
○ e.g., users visit www.example.com; site wants HSTS for all of example.com

● No way to undo HSTS besides waiting
○ "Oh no! We forgot about that service!"

● Doesn’t protect first visit
○ HSTS is delivered via header sent with HTTPS connection. Chicken and egg problem.

21

Always HTTPS: Strict Transport Security

Biggest HSTS Gotcha: Using HSTS for tracking

● Sites can set and read persistent state from a 3rd-party context
● That's a "supercookie"!

○ Can be used to track users
○ Can’t be viewed, restricted, or cleared by users

22

Always HTTPS: Strict Transport Security

Setting the supercookie:

1. Users visits shopping-site.com
2. shopping-site.com loads script from ad-network.com
3. ad-network.com script assigns user a unique ID (say, 0b11010001), and loads

subresources for each bit set in the identifier:
○ 1.ad-network.com
○ 5.ad-network.com
○ 7.ad-network.com
○ 8.ad-network.com

4. Each subresource sets HSTS for that subdomain

23

Always HTTPS: Strict Transport Security

Reading the supercookie:

● Users visits news-site.com, loads analytics script from ad-network.com
● ad-network.com script loads subresource for each bit

○ 1.ad-network.com
○ 2.ad-network.com
○ …
○ 8.ad-network.com

● ad-network.com observes which subresources redirect to https://, reconstructs ID

24

Always HTTPS: Strict Transport Security

“This information is cached in the HSTS Policy store… This information can be
retrieved by other hosts through cleverly constructed and loaded web resources…
Such a technique could potentially be abused as yet another form of ‘web tracking’.”

- https://tools.ietf.org/html/rfc6797

25

Always HTTPS: Strict Transport Security

https://nakedsecurity.sophos.com/2015/02/02/anatomy-of-a-browser-dilemma-how-hsts-supercookies-make-you-choose-between-privacy-or-security/
26

Always HTTPS: Strict Transport Security

“Recently we became aware that this theoretical attack was beginning to be deployed
against Safari users.”

- “Protecting Against HSTS Abuse” (WebKit blog, March 2018)

27

https://webkit.org/blog/8146/protecting-against-hsts-abuse/

Always HTTPS: Mitigating HSTS tracking

● No perfect solution: everything requires trade-offs of security and privacy

28

Always HTTPS: Mitigating HSTS tracking

Safari's mitigations:

● Setting the cookie: Allow subresources to set HSTS only for the first-party hostname
or the registrable domain

○ When on foo.bar.example.com, subresources can set their HSTS only if they are foo.bar.example.com or
example.com, not bar.example.com or baz.foo.bar.example.com.

○ Pop quiz: why allow registrable domain?

● Reading the cookie: piggyback on third-party cookie blocking
○ If Safari is blocking 3rd party cookies, ignore HSTS on subresources
○ Relies on existing complex 3rd party cookie blocking logic

Downside: you must visit a domain directly in order to set HSTS!

29

https://webkit.org/blog/8146/protecting-against-hsts-abuse/

Always HTTPS: Mitigating HSTS tracking

Chrome's mitigations:

● Forbid all mixed content (http:// subresources on https:// pages)
○ A good idea regardless of HSTS tracking

● Do not apply HSTS upgrades to subresources on http:// pages*
○ Minimal security loss from disregarding HSTS for subresources on http:// pages

Downside: doesn't protect HTTPS subresources at all (though that's kinda already true)

* somewhat tentative

30

https://blog.chromium.org/2019/10/no-more-mixed-messages-about-https.html
https://github.com/mikewest/strict-navigation-security

Always HTTPS: Mitigating HSTS tracking

Firefox's mitigations:

● Partition HSTS state by domain name at the top-level
○ e.g. when on foo.example.com, don't apply HSTS state for subresources that you learned when on

bar.example.com

Downside: limits when you "remember" HSTS, exacerbating first-visit problem

31

https://blog.mozilla.org/security/2021/01/26/supercookie-protections/

Always HTTPS: Strict Transport Security

HSTS Gotchas:

● No way to set includeSubdomains for all-but-a-few subdomains
○ Hard for big organizations with many subdomains operated separately

● No official way to set HSTS on full domain from subdomain
○ e.g., users visit www.example.com; site wants HSTS for all of example.com

● No way to undo HSTS besides waiting
○ "Oh no! We forgot about that service!"

● Doesn’t protect first visit
○ HSTS is delivered via header sent with HTTPS connection. Chicken and egg problem.

32

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:

Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

33

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:

Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

Strict-Transport-Security: max-age=<expire-time>; preload

34

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:

Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

Strict-Transport-Security: max-age=<expire-time>; preload

35

Allow browsers to include your HSTS
state before a user visits (e.g. in their
source code).

Always HTTPS: HSTS Preload

Browsers ship baked-in lists of HSTS sites

36

Always HTTPS: HSTS Preload

List maintained by Chromium, pulled into other browsers with extra policies

● Owners submit sites at hstspreload.org
● Must serve HSTS header with preload, includeSubdomains, max-age >= 1 year
● Can also check for removal

Operational nightmare

● Getting off the list means waiting ~6 months (until all browsers have updated)
● List size grows forever
● Frequent one-off requests are handled manually

37

Always HTTPS: HSTS Preload

How do we get rid of the preload list?

● Move all websites to https://; deprecate http://?
● Assume all websites are https://; show warnings before using http://?
● Define “high value” sites and limit list to those sites?
● Fetch portions of list on demand?
● ...

38

HTTPS

1. not all sites support https://
2. even when sites support https://, we still sometimes still use http://
3. https:// is only as strong as the certificate

39

Stopping Malicious Certificates

40

Or,

“How we spent years building a thing, only
to realize it was terrible and delete it later."

Problem: any CA can issue cert for any site

This is good:
website operators have supplier diversity.

41

Problem: any CA can issue cert for any site

This is good:
website operators have supplier diversity.

This is bad:
attackers have supplier diversity, too.

42

43

Stopping Malicious Certs: borders and boundaries?

Possible solution: Only let CAs from country X issue to websites based in country X

● But, nothing specific to DigiNotar/the Netherlands/Iran/Google about this hack*.
● The web is world-wide! We want everyone to be able to talk to everyone!
● Also, how would you enforce it?

Bottom line: this doesn't help

* For more CA failures, see sslmate.com/certspotter/failures

44

Stopping Malicious Certs: HPKP

Recall: HTTPS lets CAs attest that a given key belongs to a given site.

45

Stopping Malicious Certs: HPKP

Recall: HTTPS lets CAs attest that a given key belongs to a given site.

Possible solution: Do what SSH does! Browser remembers keys, blocks if key changes!

● Doesn't require big changes to the web.
● Website operators can still use any CA.
● Attackers now need a specific key.

Enter HPKP = "HTTP Public Key Pinning"

46

Stopping Malicious Certs: HPKP

The server sends an HTTP response header describing its pin set:

Public-Key-Pins: max-age=3000;
pin-sha256="d6qzRu9zOECb90Uez27xWltNsj0e1Md7GkYYkVoZWmM=";
pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g="

(These are SHA256(certificate.subjectPublicKeyInfo), which includes the pub. key and the key type.)

47

Stopping Malicious Certs: HPKP

Site operator can pin to keys anywhere in the chain (CA to Leaf).

HPKP passes if any pin matches any key in chain.

48

Stopping Malicious Certs: HPKP

Problem: really hard for site operators to get right

1. Almost no one understands cert chains (DAGs), issuer ecosystem, and client behavior.

2. Chain served ≠ chain validated.

3. Operators can't reliably know what chain the client will validate! It can even change!

49

https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://letsencrypt.org/docs/dst-root-ca-x3-expiration-september-2021/

Stopping Malicious Certs: HPKP

giant footgun – failure is non-recoverable.

Related: "Hostile" pinning – attackers can DoS your service ~forever

50

Stopping Malicious Certs: HPKP

Solution: un-ship HPKP

🔥🔥🔥

51

Stopping Malicious Certs: static pinning

Instead of HTTP response headers discovered dynamically,
 why not bake pins into the browser?

52

Stopping Malicious Certs: static pinning

Instead of HTTP response headers discovered dynamically,
 why not bake pins into the browser?

Because it’s a major pain in the ass, that’s why. (But we still do it.)

Strength: We can manually vet "operationally-mature" orgs for inclusion.

Weakness: It doesn't scale.

53

Stopping Malicious Certs: CAA

List what CAs allowed to issue certs for a domain in a DNS record

But:

● Only advisory — enforced at
‘layer 8’ (i.e. by the CAs)

● Hard to know impact if CA
ignores it.

● Relies on DNS, which
isn't yet secure

54

$ dig -t caa google.com

; <<>> DiG 9.10.6 <<>> -t caa google.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 27765
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;google.com. IN CAA

;; ANSWER SECTION:
google.com. 21600 IN CAA 0 issue "pki.goog"

Stopping Malicious Certs: CT

55

Certificate Transparency

56

CT: High-level idea

Maybe we can't prevent attackers from getting a malicious cert,
but maybe we can detect those bad certs.

This is more helpful than it seems!

● Makes attacks noisy, making them harder to pull off!
● Also helps identify CA problems, so we can fix them!

57

CT: The Before Times

Web serverRoot certificate
authority

cert

Web browser

cert

root cert

root cert

root cert

root cert

58

1. Certificates submitted to public logs
2. Monitors watch logs for

malicious certificates

CT: Public logs

cert

59

CT logs

Web serverRoot certificate
authority

cert

Web browser

cert

root cert

root cert

root cert

root certCheck if cert appears
in logs before treating

as valid?

60

CT logs

Web serverRoot certificate
authority

cert

Web browser

cert

root cert

root cert

root cert

root certCheck if cert appears
in logs before treating

as valid?

61

CT logs

cert

Get Back:
Signed statement that the
certificate received by log

62

CT logs

Submit:

Web server Web browser

cert

root cert

root cert

root cert

root cert

Signed statements that the
certificate is publicly logged

log public key log public keylog public key

63

Web server Web browser

cert

root cert

root cert

root cert

root cert

Signed statements that the
certificate is publicly logged

log public key log public keylog public key

Signed statements that the
certificate will be publicly logged

(Signed Certificate Timestamp)

64

CT: One more detail...

The logs should be untrusted.

Logs might

● say a cert was logged when it wasn't
● give different data to different people

65

CT: One more detail...

The logs should be untrusted.

Logs might

● say a cert was logged when it wasn't
● give different data to different people

66

Need a “summary” of log contents.

Lets observers verify

● that a given cert is included,
● that everyone saw the same data.

And efficiently.

CT: Merkle tree

H(H(H(Cert 1||Cert 2)||H(Cert 3||Cert 4))||H(H(Cert 5||Cert 6)||H(Cert 7||Cert 8)))

H(H(Cert 1||Cert 2)||H(Cert 3||Cert 4)) H(H(Cert 5||Cert 6)||H(Cert 7||Cert 8))

H(Cert 1||Cert 2) H(Cert 3||Cert 4) H(Cert 5||Cert 6) H(Cert 7||Cert 8)

Cert 1 Cert 2 Cert 3 Cert 4 Cert 5 Cert 6 Cert 7 Cert 8

Summary = Merkle tree head (aka the root hash)

67

CT: Merkle tree properties

● Only one sequence of certs produces a given root hash

● If two observers calculate the same hash, then they saw all the same certs

68

CT: Merkle tree properties

To prove that a given cert is included in a root hash, only need log(N) hash values.

Cert

Root

69

CT: Merkle tree properties

Similarly, easy to prove that a new root hash is a superset of an old one.

Old root

New Root

70

CT: verifying log honesty

Observer

1. finds an SCT,

2. gets proof that a cert is included in a root hash,

3. gets proof that new hash includes an older hash, and

4. compares root with others to make sure everyone agrees.

71

CT: Promises

CT does not prevent attacks directly

● Attacker can obtain malicious cert and it might not show up in logs for 24hrs
● Maybe longer until observers notice something is wrong with the log

CT offers detection

● Good chance that a malicious cert will be detected eventually

CT helps WebPKI hygiene

● Helps organizations and researchers discover bad practices

72

CT: Organizational hygiene

“Earlier this year, our Certificate Transparency monitoring service alerted us to an important
opportunity to better align internal certificate policies. Specifically, we learned that the Let's
Encrypt CA issued two TLS certificates for multiple fb.com subdomains… We determined
that these certificates were requested by the hosting vendor managing these
domains for several of our microsites.”

- “Early Impacts of Certificate Transparency” (Facebook, April 2016)

73

https://www.facebook.com/notes/protect-the-graph/early-impacts-of-certificate-transparency/1709731569266987/

CT: CA hygiene

“On September 14, around 19:20 GMT, Symantec’s Thawte-branded CA issued an Extended
Validation (EV) pre-certificate for the domains google.com and www.google.com. This
pre-certificate was neither requested nor authorized by Google… We discovered this
issuance via Certificate Transparency logs… the issuance occurred during a
Symantec-internal testing process”

- “Improved Digital Certificate Security” (Google, September 2015)

74

https://google.com/
https://www.google.com/
http://www.certificate-transparency.org/
https://security.googleblog.com/2015/09/improved-digital-certificate-security.html

CT: a work in progress

75

CT: Current state

Chrome and Safari require and verify SCTs on all certificates.

Chrome newly checks that SCTs are included in logs ("SCT Auditing").

● List of visited SCTs ~= list of sites you visited. Hard to share!

But…

● No one checks that logs are presenting consistent views
● These systems are still being designed, built, and deployed!

76

many open problems.
no easy answers.

77

Simple solutions, but still open problems

How do we always connect to sites securely?

● How do we fix tracking in HSTS, without sacrificing security?
● What’s the long-term plan for HSTS preloading and static pinning?

How do we ensure that a stolen certificate isn't game-over?

● How can we stop attackers from using stolen certs (HPKP) without the pitfalls?
● How can we verify log honesty in Certificate Transparency?

Many more we didn't talk about…

78

Questions?

79

