HTTPS in the real world

— Joe DeBlasio
‘ jdeblasio@chromium.org
% @deblasioj

Who am |?

| lead Chrome Security's "HTTPS Ecosystem Engineering" team.

We work on:
e increasing HTTPS adoption,
e communicating site identity to users,
e researching on how people use Chrome’s security features,
e behind-the-scenes ecosystem stuff,
(e.g. Certificate Transparency, HSTS, TLS deprecations, etc.), and

| also do other security team work:

e security reviews and consulting for other Chrome teams.
e Chrome's Vulnerability Rewards Program

Previously: PhD in e-crime and web security measurement from UCSD.

Reminder: HTTPS

https:// provides confidentiality, integrity, authentication.

But
1. not all sites support https://
2. even when sites support https://, we still sometimes still use http://
3. https://is only as strong as the certificate

Today: attempts to fix (2) and (3),
with lessons about what worked in the real world and what didn’t.

HTTPS sites don't always use HTTPS

Always HTTPS: users still end up on http://

Even when sites fully support* https://, users still use http:// sometimes:

e User clicks on http:// links
e User types “example.com” into the address bar**
e https:// page loads http:// subresources** (e.g. images)

* That's not guaranteed. Again, a different talk.

**We've partially fixed these in the last ~year.

Always HTTPS: Good sites redirect users

$ curl -v http://joedeblasio.com/foo

> GET /foo HTTP/1.1

> Host: joedeblasio.com

>

< HTTP/1.1 301 Moved Permanently

< Location: https://joedeblasio.com/foo

Not good enough! Attackers can prevent these redirects!

Always HTTPS: http:// interception happens

Download sslstrip 0.9

GitHub Project page

This tool provides a demonstration of the HTTPS stripping attacks that |
presented at Black Hat DC 20009. It will transparently hijack HTTP traffic on a
network, watch for HTTPS links and redirects, then map those links into either
look-alike HTTP links or homograph-similar HTTPS links. It also supports modes
for supplying a favicon which looks like a lock icon, selective logging, and session

denial. For more information on the attack, see the video from the presentation
below.

Experts in network

QbETRESEC

NETRESEC > Blog
Erik Hjelmvik, Tuesday, 31 March 2015 01:15:00 (UTC/GMT)

China's Man-on-the-Side Attack on GitHub

& GitHub Status -2 Follow

We are working to mitigate an ongoing and
evolving large DDoS attack.

>ralBEtna®

Always HTTPS: fix attempt - positive Ul

google.com

Always HTTPS: fix attempt - positive Ul

Doesn't work!

e People don't notice missing indicators.
e Many don't know what they mean.
e Not actionable. What's the user supposed to do?

See
° “The Emperor’s New Security Indicators” (Schechter et al.)
° “An Evaluation of Extended Validation and Picture-in-Picture Phishing Attacks” (Jackson et al.)
° “If HTTPS Were Secure, | Wouldn’t Need 2FA’ -- End User and Administrator Mental Models of HTTPS” (Krombholz et al.)
[)

“The Web's Identity Crisis: Understanding the Effectiveness of Website Identity Indicators” (Thompson et al.)

http://www.usablesecurity.org/emperor/emperor.pdf
http://www.usablesecurity.org/papers/jackson.pdf
https://www.sba-research.org/wp-content/uploads/publications/2019-Pfeffer-HTTPS_Mental_Models.pdf
https://ai.google/research/pubs/pub48199

Always HTTPS: Strict Transport Security

Let websites opt-in to strict mode: “Only ever contact me via https://.”

10

Always HTTPS: Strict Transport Security

Let websites opt-in to strict mode: “Only ever contact me via https://.”

e Browser transparently rewrites http://example.com to https://example.com.

e Invalid certificate on https://example.com can't be bypassed.

HSTS = HTTP Strict Transport Security

11

x 4l
® O ¥ Q

500 ms

Elements Console

Preserve log

1000 ms 1500 ms

Name

|_| google.com

B www.google.com

|| www.google.com

-] googlelogo_color_272x92dp.png
i2_2ec824b0.png

| photo.jpg

googlemic_color_24dp.png
| desktop_searchbox_sprites302_hr.webp
1

Sources

| Disable cache

2000 ms

Network

Performance Memory Application Security Audits

Online v + 3

2500 ms 3000 ms 3500 ms 4000 ms 4500 ms 5000 ms 5500 ms

X Headers Preview Response Timing

v General

Request URL: http://www.google.com/
Re!
Status Code:

307 Internal Redirect

: no-referrer—

v Response Headers view source

Location: https://www.google.com/

Non-Authoritative-Reason: HSTS

6000 ms

Your connection is not private

Attackers might be trying to steal your information from subdomain.preloaded-
hsts.badssl.com (for example, passwords, messages, or credit cards). Learn more

NET::ERR_CERT_COMMON_NAME_INVALID

subdomain.preloaded-hsts.badssl.com normally uses encryption to protect your
information. When Google Chrome tried to connect to subdomain.preloaded-
hsts.badssl.com this time, the website sent back unusual and incorrect credentials.
This may happen when an attacker is trying to pretend to be subdomain.preloaded-
hsts.badssl.com, or a Wi-Fi sign-in screen has interrupted the connection. Your
information is still secure because Google Chrome stopped the connection before any
data was exchanged.

You cannot visit subdomain.preloaded-hsts.badssl.com right now because the website
uses HSTS. Network errors and attacks are usually temporary, so this page will
probably work later.

13

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:
Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

14

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:
Strict-Transport-Security: max-age=:<kexpire-time>

Strict-Transport-Security: max-age::<expire-time>; includeSubDomains

How long (in seconds) the browser
should remember this STS information

15

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:
Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>: includeSubDomains

Apply to all subdomains, e.g. if header
observed on example.com, upgrade
foo.example.com, too.

16

Always HTTPS: Strict Transport Security

HSTS Gotchas:

17

Always HTTPS: Strict Transport Security

HSTS Gotchas:

e Noway to set includeSubdomains for all-but-a-few subdomains
o Hard for big organizations with many subdomains operated separately

18

Always HTTPS: Strict Transport Security

HSTS Gotchas:

e Noway to set includeSubdomains for all-but-a-few subdomains
o Hard for big organizations with many subdomains operated separately

e No official way to set HSTS on full domain from subdomain
o e.g. users visit www.example.com; site wants HSTS for all of example.com

19

Always HTTPS: Strict Transport Security

HSTS Gotchas:

e Noway to set includeSubdomains for all-but-a-few subdomains
o Hard for big organizations with many subdomains operated separately

e No official way to set HSTS on full domain from subdomain
o e.g. users visit www.example.com; site wants HSTS for all of example.com

e No way to undo HSTS besides waiting
o "Oh no! We forgot about that service!"

20

Always HTTPS: Strict Transport Security

HSTS Gotchas:

e Noway to set includeSubdomains for all-but-a-few subdomains
o Hard for big organizations with many subdomains operated separately

e No official way to set HSTS on full domain from subdomain
o e.g. users visit www.example.com; site wants HSTS for all of example.com

e No way to undo HSTS besides waiting
o "Oh no! We forgot about that service!"

e Doesn't protect first visit

o HSTS is delivered via header sent with HTTPS connection. Chicken and egg problem.

21

Always HTTPS: Strict Transport Security

Biggest HSTS Gotcha: Using HSTS for tracking

e Sites can set and read persistent state from a 3rd-party context

e That's a"supercookie"!
o Can be used to track users
o Can't be viewed, restricted, or cleared by users

22

Always HTTPS: Strict Transport Security

Setting the supercookie:

1. Users visits shopping-site.com
2. shopping-site.com loads script from ad-network.com
3. ad-network.com script assigns user a unique ID (say, Ob11010001), and loads

subresources for each bit set in the identifier:
o lad-network.com
o 5.ad-network.com
o 7Z.ad-network.com
o 8.ad-network.com

4. Each subresource sets HSTS for that subdomain

23

Always HTTPS: Strict Transport Security

Reading the supercookie:

e Users visits news-site.com, loads analytics script from ad-network.com

e ad-network.com script loads subresource for each bit
o l.ad-network.com

o 2.ad-network.com
@]

o 8.ad-network.com
e ad-network.com observes which subresources redirect to https://, reconstructs ID

24

Always HTTPS: Strict Transport Security

“This information is cached in the HSTS Policy store... This information can be

retrieved by other hosts through cleverly constructed and loaded web resources...

Such a technique could potentially be abused as yet another form of ‘web tracking”’
https://tools.ietf.org/html/rfc6797

25

Always HTTPS: Strict Transport Security

Award-winning computer security news) €@ © @ ©

Anatomy of a browser dilemma —

how HSTS ‘supercookies’ make you
choose between privacy or security

02FEB 2015 (EER

https://nakedsecurity.sophos.com/2015/02/02/anatomy-of-a-browser-dilemma-how-hsts-supercookies-make-you-choose-between-privacy-or-security/ 29

Always HTTPS: Strict Transport Security

“Recently we became aware that this theoretical attack was beginning to be deployed
against Safari users.”

- “Protecting Against HSTS Abuse” (WebKit blog, March 2018)

27

https://webkit.org/blog/8146/protecting-against-hsts-abuse/

Always HTTPS: Mitigating HSTS tracking

e No perfect solution: everything requires trade-offs of security and privacy

28

Always HTTPS: Mitigating HSTS tracking

Safari's mitigations:

e Setting the cookie: Allow subresources to set HSTS only for the first-party hostname

or the registrable domain

o When on foo.bar.example.com, subresources can set their HSTS only if they are foo.bar.example.com or
example.com, not bar.example.com or baz.foo.bar.example.com.
o Pop quiz: why allow registrable domain?

e Reading the cookie: piggyback on third-party cookie blocking

o If Safariis blocking 3rd party cookies, ignore HSTS on subresources
o Relies on existing complex 3rd party cookie blocking logic

Downside: you must visit a domain directly in order to set HSTS!

29

https://webkit.org/blog/8146/protecting-against-hsts-abuse/

Always HTTPS: Mitigating HSTS tracking

Chrome's mitigations:

e Forbid all mixed content (http:// subresources on https:// pages)
o A good idea regardless of HSTS tracking

e Do not apply HSTS upgrades to subresources on http:// pages*
o Minimal security loss from disregarding HSTS for subresources on http:// pages

Downside: doesn't protect HTTPS subresources at all (though that's kinda already true)

* somewhat tentative

30

https://blog.chromium.org/2019/10/no-more-mixed-messages-about-https.html
https://github.com/mikewest/strict-navigation-security

Always HTTPS: Mitigating HSTS tracking

Firefox's mitigations:

e Partition HSTS state by domain name at the top-level

o e.g. when on foo.example.com, don't apply HSTS state for subresources that you learned when on
bar.example.com

Downside: limits when you "remember” HSTS, exacerbating first-visit problem

31

https://blog.mozilla.org/security/2021/01/26/supercookie-protections/

Always HTTPS: Strict Transport Security

HSTS Gotchas:

e No way to set includeSubdomains for all-but-a-few subdomains
o Hard for big organizations with many subdomains operated separately

e No official way to set HSTS on full domain from subdomain
o e.g., users visit www.example.com; site wants HSTS for all of example.com

e No way to undo HSTS besides waiting

o "Oh no! We forgot about that service!"

e Doesn't protect first visit

o HSTS is delivered via header sent with HTTPS connection. Chicken and egg problem.

Ky

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:
Strict-Transport-Security: max-age=<expire-time>

Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

33

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:
Strict-Transport-Security: max-age=<expire-time>
Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

Strict-Transport-Security: max-age=<expire-time>; preload

34

Always HTTPS: Strict Transport Security

Opt-in to HSTS via HTTP response header:
Strict-Transport-Security: max-age=<expire-time>
Strict-Transport-Security: max-age=<expire-time>; includeSubDomains

Strict-Transport-Security: max-age=<expire-time>; preload

Allow browsers to include your HSTS
state before a user visits (e.g. in their
source code).

35

Always HTTPS: HSTS Preload

Browsers ship baked-in lists of HSTS sites

"docs.python.org", "policy": "bulk-legacy", "mode": "force-https", "include_ subdomains": true },
"encircleapp.com", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"onedrive.live.com", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"onedrive.com", "policy": "bulk-legacy", "mode": "force-https", "include_ subdomains": true },
"keepersecurity.com", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"keeperapp.com", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"donmez.ws", i "bulk-legacy", "mode": rce-https", "include_subdomains true },
"cloudcert.org", "bulk-legacy", "mode "force-https", "include_ subdomains": true },
"seifried.org", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"adsfund.org", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"dillonkorman.com", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"edmodo.com", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"app.manilla.com", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"harvestapp.com", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"anycoin.me", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"noexpect.org", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"subrosa.io", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"manageprojects.com", "policy": "bulk-legacy", "mode": "force-https", "include_ subdomains": true },
"vocaloid.my", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"sakaki.anime.my", i : "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"reviews.anime.my", : "bulk-legacy", "mode "force-https", "include subdomains": true },
"miku.hatsune.my", i : "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"webcollect.org.uk", "policy": "bulk-legacy", "mode": "force-https", "include_ subdomains": true },
"accounts.firefox.com", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"z.ai", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },
"wildbee.org", "policy": "bulk-legacy", "mode": "force-https", "include_subdomains": true },

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

36

Always HTTPS: HSTS Preload

List maintained by Chromium, pulled into other browsers with extra policies

e Owners submit sites at hstspreload.org

e Must serve HSTS header with preload, includeSubdomains, max-age >=1year
e Can also check for removal

Operational nightmare

e Getting off the list means waiting ~6 months (until all browsers have updated)
e List size grows forever

e Frequent one-off requests are handled manually

37

Always HTTPS: HSTS Preload

How do we get rid of the preload list?

Move all websites to https://; deprecate http://?

Assume all websites are https://; show warnings before using http://?
Define “high value” sites and limit list to those sites?

Fetch portions of list on demand?

38

HTTPS

1. not all sites support https://
2. even when sites support https://, we still sometimes still use http://
3. https://is only as strong as the certificate

39

Stopping Malicious Certificates

Oir,

“How we spent years building a thing, only
to realize it was terrible and delete it later.”

40

Problem: any CA can issue cert for any site

This is good:
website operators have supplier diversity.

41

Problem: any CA can issue cert for any site

This is good:
website operators have supplier diversity.

This is bad:
attackers have supplier diversity, too.

alex norrts

42

= threat Ost Cloud Security Malware Vulnerabilities InfoSec Insider Podcasts

California Attorney General Puts Mobile App Developers on Notice

South Carolina Data Breach Casts Spotl|

Final Report on DigiNotar Hack Shows Total

Compromise of CA Servers

r
future & tense

How a 2011 Hack You’ve
Never Heard of Changed
the Internet’s
Infrastructure

It all started with an internet user in Iran who couldn’t get into
his Gmail account.

By JOSEPHINE WOLFF DEC 21,2016 - 11:00 AM

Fake DigiNotar web certificate risk to

Iranians

©® 5 September 2011

Fresh evidence has emerged that
stolen web security certificates
may have been used to spy on
people in Iran.

Analysis by Trend Micro suggests a
spike in the number of compromised
DigiNotar certificates being issued to
the Islamic Republic.

It is believed the digital IDs were
being used to trick computers into
thinking they were directly accessing
sites such as Google.

f © ¥ [< Share

- |

-

GETTY IMAGES

Iran was a heavy user of DigiNotar
certificates around the time that fake
certificates were created

43

Stopping Malicious Certs: borders and boundaries?

Possible solution: Only let CAs from country X issue to websites based in country X

e But, nothing specific to DigiNotar/the Netherlands/Iran/Google about this hack™.
e The web is world-wide! We want everyone to be able to talk to everyone!
e Also, how would you enforce it?

Bottom line: this doesn't help

* For more CA failures, see ssimate.com/certspotter/failures

44

Stopping Malicious Certs: HPKP

Recall: HTTPS lets CAs attest that a given key belongs to a given site.

45

Stopping Malicious Certs: HPKP

Recall: HTTPS lets CAs attest that a given key belongs to a given site.

Possible solution: Do what SSH does! Browser remembers keys, blocks if key changes!

e Doesn't require big changes to the web.
e Website operators can still use any CA.
e Attackers now need a specific key.

Enter HPKP ="HTTP Public Key Pinning"

46

Stopping Malicious Certs: HPKP

The server sends an HTTP response header describing its pin set:

Public-Key-Pins: max-age=3000;
pin-sha256="d6qzRu9z0ECb90Uez27xW1tNsjOe1Md7GKYYkVoZWmM=" ;
pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g="

(These are SHA256(certificate.subjectPublicKeyInfo), which includes the pub. key and the key type.)

47

Stopping Malicious Certs: HPKP

Site operator can pin to keys anywhere in the chain (CA to Leaf).

HPKP passes if any pin matches any key in chain.

Certificate Viewer: *.google.com

General Details

Certificate Hierarchy

~ Builtin Object Token:GlobalSign Root CA - R2
- GTS CA 101

*.ao0ale.com

48

Stopping Malicious Certs: HPKP

Problem: really hard for site operators to get right
1. Almost no one understands cert chains (DAGSs), issuer ecosystem, and client behavior.
2. Chain served # chain validated.

3. Operators can't reliably know what chain the client will validate! It can even change!

49

https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://letsencrypt.org/docs/dst-root-ca-x3-expiration-september-2021/

Stopping Malicious Certs: HPKP

giant footgun - failure is non-recoverable.

chain. The UA will then check that the set of these SPKI
Fingerprints intersects the set of SPKI Fingerprints in that Pinned
Host's Pinning Metadata. If there is set intersection, the UA
continues with the connection as normal. [UEiEs == WITERE
treat this Pin Validation failure as a nqn-rgcoverable error.

7. Usability Considerations

When pinning works to detect impostor Pinned Hosts, users will
experience denial of service. It is advisable for UAs to explain the
reason why, i.e., that it was impossible to verify the confirmed
cryptographic identity of the host.

It is advisable that UAs have a way for users to clear current Pins

for Pinned Hosts and that UAs allow users to query the current state
of Pinned Hosts.

Related: "Hostile" pinning — attackers can DoS your service ~forever

50

Stopping Malicious Certs: HPKP

Solution: un-ship HPKP

é & ¢

Comment 31 by bugdroid1@chromium.org on Wed, Oct 10, 2018, 8:38 PM PDT (55 weeks ago)

The following revision refers to this bug:
https://chromium.googlesource.com/chromium/src.git

commit €211b725cdb2b5e0e7cb37f45f2126eb09780562 (71.0.3578.0)

Author: Matt Mueller <mattm@chromium.org>

Date: Thu Oct 11 03:38:10 2018

Remove HTTP-Based Public Key Pinning header parsing and persistence code.
And related code that uses it.

Cronet depends on the base dynamic PKP support, so is not removed here.

Based on https://crrev.com/c/1005960 by palmer & nharper.

51

Stopping Malicious Certs: static pinning

Instead of HTTP response headers discovered dynamically,
why not bake pins into the browser?

52

Stopping Malicious Certs: static pinning

Instead of HTTP response headers discovered dynamically,
why not bake pins into the browser?

Because it’s a major pain in the ass, that’s why. (But we still do it.)

Strength: We can manually vet "operationally-mature" orgs for inclusion.

Weakness: It doesn't scale.

53

Stopping Malicious Certs: CAA

List what CAs allowed to issue certs for a domain in a DNS record

But:

Only advisory — enforced at
‘layer 8’ (i.e. by the CAs)

Hard to know impact if CA
ignores it.

Relies on DNS, which
isn't yet secure

$ dig -t caa google.com

5 <<>> DiG 9.10.6 <<>> -t caa google.com
55 global options: +cmd
;5 Got answer:

55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 27765

55 flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONAL: 1

;3 OPT PSEUDOSECTION:

; EDNS: version: @, flags:; udp: 512

;3 QUESTION SECTION:

;google.com. IN CAA

55 ANSWER SECTION:
google.com. 21600 IN (@Y.

@ issue "pki.goog"

54

Stopping Malicious Certs: CT

55

Certificate Transparency

CT: High-level idea

Maybe we can't prevent attackers from getting a malicious cert,
but maybe we can detect those bad certs.

This is more helpful than it seems!

e Makes attacks noisy, making them harder to pull off!
e Also helps identify CA problems, so we can fix them!

57

CT: The Before Times

Root certificate Web server Web browser

authority

root cert
~——
root cert

——

v 0 =9

root cert
~——
root cert

——

58

CT: Public logs

—_— CT logs
-

¢
/

1. Certificates submitted to public logs
2. Monitors watch logs for
malicious certificates

Root certificate Web server Web browser

authority

root cert
%

B Check if cert appears I
in logs before treating L__—

. . as valid?

CT logs

o/"" 9

root cert
~——

root cert

——

60

Root certificate
authority

Web server Web browser

>
/)

root cert
- —

UL _C' > ~pears root cert
in’ ~ating L. —

)L as V.

/\
root cert

~——
root cert

——

Submit:

—

-

Get Back:
Signed statement that the
certificate received by log

CT logs

62

Web server Web browser

—
Signed statements that the e N
certificateis pUbIICIY Iogged root cert root cert
% %
root cert root cert

\ff

log public key log public key log public key

. . .

63

Signed statements that the
certificate will be publicly logged
(Signed Certificate Timestamp)

Web server Web browser

Signe. .at the e N
certific”’ “/logged root cert root cert
—) —
root cert root cert
_/—\ _/—\

log public key log public key log public key

. . .

64

CT: One more detail...

The logs should be untrusted.

Logs might

e say acert was logged when it wasn't
e (ive different data to different people

65

CT: One more detail...

The logs should be untrusted.

Logs might

say a cert was logged when it wasn't
give different data to different people

Need a “summary” of log contents.

Lets observers verify

e thata given certis included,
e that everyone saw the same data.

And efficiently.

66

CT: Merkle tree

/ Summary = Merkle tree head (aka the root hash)

H(H(H(Cert 1]|Cert 2)||H(Cert 3|[Cert 4))||H(H(Cert 5||Cert 6)||H(Cert 7|[Cert 8)))

/\

H(H(Cert 1||Cert 2)||H(Cert 3||Cert 4)) H(H(Cert 5||Cert 6)||H(Cert 7||Cert 8))
H(Cert 1||Cert 2) H(Cert 3||Cert 4) H(Cert 5||Cert 6) H(Cert 7||Cert 8)

/N

Cert 1 Cert 2 Cert 3 Cert 4 Cert5 Cert 6 Cert 7 Cert 8

CT: Merkle tree properties

e Only one sequence of certs produces a given root hash

e [f two observers calculate the same hash, then they saw all the same certs

68

CT: Merkle tree properties

To prove that a given cert is included in a root hash, only need log(N) hash values.

69

CT: Merkle tree properties

Similarly, easy to prove that a new root hash is a superset of an old one.

Old root

70

CT: verifying log honesty

Observer

1. finds an SCT,
gets proof that a cert is included in a root hash,

gets proof that new hash includes an older hash, and

r w N

compares root with others to make sure everyone agrees.

71

CT: Promises

CT does not prevent attacks directly

e Attacker can obtain malicious cert and it might not show up in logs for 24hrs
e Maybe longer until observers notice something is wrong with the log

CT offers detection

e (Good chance that a malicious cert will be detected eventually

CT helps WebPKI hygiene

e Helps organizations and researchers discover bad practices

72

CT: Organizational hygiene

“Earlier this year, our Certificate Transparency monitoring service alerted us to an important
opportunity to better align internal certificate policies. Specifically, we learned that the Let's
Encrypt CA issued two TLS certificates for multiple fb.com subdomains... We determined
that these certificates were requested by the hosting vendor managing these
domains for several of our microsites.”

- “Early Impacts of Certificate Transparency” (Facebook, April 2016)

73

https://www.facebook.com/notes/protect-the-graph/early-impacts-of-certificate-transparency/1709731569266987/

CT: CA hygiene

“On September 14, around 19:20 GMT, Symantec’s Thawte-branded CA issued an Extended
Validation (EV) pre-certificate for the domains google.com and www.google.com. This
pre-certificate was neither requested nor authorized by Google... We discovered this
issuance via Certificate Transparency logs... the issuance occurred during a
Symantec-internal testing process”

- “Improved Digital Certificate Security” (Google, September 2015)

74

https://google.com/
https://www.google.com/
http://www.certificate-transparency.org/
https://security.googleblog.com/2015/09/improved-digital-certificate-security.html

CT: awork in progress

Chrome announces
plan to require CT
for EV certificates

Sep 2013

Initial CT standard
published
Jun 2013

Jan 2014
Jun 2013

All EV certificates
issued
subsequently must
be CT-logged
Jan 2015

Jan 2015

All Symantec
certificates issued
subsequently must

be CT-logged

Jun 2016

Chrome delays CT
enforcement to
public certificates
issued Apr 2018 or
later

Apr 2017

Chrome announces
plan to require CT
for all public
certificates Oct
2017 or later
Oct 2016

Jan 2016 Jan 2017

Chrome ships
Expect-CT header
to stable channel

Sep 2017

Jan 2018

Chrome stable
channel begins
enforcing CT
requirement for all
certificates issued
Apr 2018 or later
Jul 2018

v

Nov 2018

75

CT: Current state

Chrome and Safari require and verify SCTs on all certificates.

Chrome newly checks that SCTs are included in logs ("SCT Auditing").

e List of visited SCTs ~= list of sites you visited. Hard to share!

But...

e No one checks that logs are presenting consistent views
e These systems are still being designed, built, and deployed!

76

many open problems.
NnoO easy answers.

77

Simple solutions, but still open problems

How do we always connect to sites securely?

e How do we fix tracking in HSTS, without sacrificing security?
e What's the long-term plan for HSTS preloading and static pinning?

How do we ensure that a stolen certificate isn't game-over?

e How can we stop attackers from using stolen certs (HPKP) without the pitfalls?
e How can we verify log honesty in Certificate Transparency?

Many more we didn't talk about...

78

Questions?

79

